Apriori Algorithm

- Apriori principle
- Frequent itemsets generation
- Association rules generation

Section 6 of course book

Association Rule Mining (ARM)

- ARM is not only applied to market basket data
- There are algorithm that can find any association rules
 - Criteria for selecting rules: confidence, number of tests in the left/right hand side of the rule

\[(\text{Cheat} = \text{no}) \land (\text{Refund} = \text{yes}) \rightarrow (\text{Marital Status} = \text{singel})\]
\[(\text{Taxable Income} > 100) \rightarrow (\text{Cheat} = \text{no}) \land (\text{Refund} = \text{yes})\]

- What is the difference between classification and ARM?
 - ARM can be used for obtaining classification rules
Mining Association Rules

Example of Rules:

- \(\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} \) \(s=0.4, c=0.67 \)
- \(\{\text{Milk, Beer}\} \rightarrow \{\text{Diaper}\} \) \(s=0.4, c=1.0 \)
- \(\{\text{Diaper, Beer}\} \rightarrow \{\text{Milk}\} \) \(s=0.4, c=0.67 \)
- \(\{\text{Beer}\} \rightarrow \{\text{Milk, Diaper}\} \) \(s=0.4, c=0.67 \)
- \(\{\text{Diaper}\} \rightarrow \{\text{Milk, Beer}\} \) \(s=0.4, c=0.5 \)
- \(\{\text{Milk}\} \rightarrow \{\text{Diaper, Beer}\} \) \(s=0.4, c=0.5 \)

Observations:

- All the above rules are binary partitions of the same itemset: \(\{\text{Milk, Diaper, Beer}\} \)
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- **Two-step approach:**
 1. **Frequent Itemset Generation**
 - Generate all itemsets whose support \(\geq \text{minsup} \)
 2. **Rule Generation**
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

- Frequent itemset generation is computationally expensive
Frequent Itemset Generation

Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Given \(d \) items, there are \(2^d \) possible candidate itemsets

Transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

List of Candidates

- Match each transaction against every candidate
- Complexity \(\sim O(NMw) \) \(\Rightarrow \) Expensive since \(M = 2^d \) !!!
Computational Complexity

- Given \(d \) unique items:
 - Total number of itemsets = \(2^d \)
 - Total number of possible association rules:

\[
R = \sum_{k=1}^{d} \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j}
\]

\[
= 3^d - 2^{d+1} + 1
\]

If \(d = 6 \), \(R = 602 \) rules

Frequent Itemset Generation Strategies

- Reduce the number of candidate itemsets (M)
 - Complete search: \(M = 2^d \)
 - Use pruning techniques to reduce M
 - Used in Apriori algorithm

- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases

- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction
 - Used in the Apriori algorithm
Apriori Algorithm

- Proposed by **Agrawal R, Imielinski T, Swami AN**
 - “Mining Association Rules between Sets of Items in Large Databases.“
 - *SIGMOD*, June 1993
 - Available in Weka

- Other algorithms
 - Dynamic Hash and Pruning (**DHP**), 1995
 - FP-Growth, 2000
 - H-Mine, 2001

Reducing Number of Candidate Itemsets

- **Apriori principle:**
 - If an itemset is frequent, then all of its subsets must also be frequent, or
 - if an item set is infrequent then all its supersets must also be infrequent

- Apriori principle holds due to the following property of the support measure:

\[\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y) \]

 - Support of an itemset never exceeds the support of its subsets
 - This is known as the anti-monotone property of support
Illustrating Apriori Principle

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Items (1-itemsets)

Minimum Support = 3

If every subset is considered, \(6C_1 + 6C_2 + 6C_3 = 41\)
With support-based pruning, \(6 + 6 + 1 = 13\)

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

What about \{Beer, Diaper, Milk\}? And, \{Bread, Milk, Beer\}? And, \{Bread, Diaper, Beer\}?
Frequent Itemset Generation

Apriori Algorithm

- **Level-wise algorithm:**
 1. Let $k = 1$
 2. Generate frequent itemsets of length 1
 3. Repeat until no new frequent itemsets are identified
 1. Generate length $(k+1)$ candidate itemsets from length k frequent itemsets
 2. Prune candidate itemsets containing subsets of length k that are infrequent
 ➢ *How many k-itemsets contained in a $(k+1)$-itemset?*
 3. Count the support of each candidate by scanning the DB
 4. Eliminate candidates that are infrequent, leaving only those that are frequent

Note: steps 3.2 and 3.4 prune itemsets that are infrequent
Generating Itemsets Efficiently

- How can we efficiently generate all (frequent) item sets at each iteration?
 - Avoid generate repeated itemsets and infrequent itemsets
- Finding one-item sets easy
- **Idea:** use one-item sets to generate two-item sets, two-item sets to generate three-item sets, …
 - If \((A \ B)\) is frequent item set, then \((A)\) and \((B)\) have to be frequent item sets as well!
 - In general: if \(X\) is a frequent \(k\)-item set, then all \((k-1)\)-item subsets of \(X\) are also frequent
 - \(\Rightarrow\) Compute \(k\)-item set by merging two \((k-1)\)-itemsets. Which ones?

E.g. Merge \(\{\text{Bread, Milk}\}\) with \(\{\text{Bread, Diaper}\}\) to get \(\{\text{Bread, Diaper, Milk}\}\)

Example: generating frequent itemsets

- Given: five frequent 3-itemsets
 \((A \ B \ C)\) , \((A \ B \ D)\) , \((A \ C \ D)\) , \((A \ C \ E)\) , \((B \ C \ D)\)

1. Lexicographically ordered!
2. Merge \((x_1, x_2, \ldots, x_{k-1})\) with \((y_1, y_2, \ldots, y_{k-1})\),
 if \(x_1 = y_1, x_2 = y_2, \ldots, x_{k-2} = y_{k-2}\)
- Candidate 4-itemsets:
 \((A \ B \ C \ D)\) \hspace{1cm} OK because of \((A \ B \ C)\), \((A \ B \ D)\), \((A \ C \ D)\), \((B \ C \ D)\)
 \((A \ C \ D \ E)\) \hspace{1cm} Not OK because of \((C \ D \ E)\)

3. Final check by counting instances in dataset!
Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each generated candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Hash Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
<td>D, E</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
<td>C, H</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
<td>B</td>
</tr>
</tbody>
</table>

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L - f$ satisfies the minimum confidence requirement
 - If $\{A,B,C,D\}$ is a frequent itemset, candidate rules:
 - $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$
 - $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$
 - $AB \rightarrow CD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$
 - $BD \rightarrow AC$, $CD \rightarrow AB$

- If $|L| = k$, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)
Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property
 \[c(ABC \rightarrow D) \text{ can be larger or smaller than } c(AB \rightarrow D) \]
 - But confidence of rules generated from the same itemset have an anti-monotone property
 - e.g., \(L = \{A,B,C,D\} \):
 \[c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD) \]
 - Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

Low Confidence Rule

Pruned Rules
Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent.

- \(\text{join}(CD \Rightarrow AB, BD \Rightarrow AC) \) would produce the candidate rule \(D \Rightarrow ABC \).

- Prune rule \(D \Rightarrow ABC \) if it does not have high confidence.

- Support counts have been obtained during the frequent itemset generation step.