Virtual Reality Technology and Programming

TNM053:
Lecture 8: Haptic Devices

Haptic

- Haptic: adjective technical of or relating to the sense of touch, in particular relating to the perception and manipulation of objects using the senses of touch and proprioception.
- Origin late 19th cent.: from Greek haptikos 'able to touch or grasp', from haptein 'fasten'.

Haptic interaction

- Making use of force and movement
- To convey force
- To convey movement of objects
- To convey realism of objects:
 - Give them physical rigidity
 - To give them surface properties
 - Give them resistance
 - Give them weight

Delivering haptic sensation

- Motor driven
- Electromagnetic
- Hydraulic
 - Enormously powerful
- Gyroscopic
 - Good for impacts

Toys

Vibration can be employed

- FakeSpace Cybertouch
- Employs vibration to tell the user
 - That their finger has reached a surface
 - Information about the surface
- Quite limited but usable
Home cinema experience!

- D-Box Odyssee
- Hydraulic
- Central unit signals drivers
 - Shake, vibrate and jolt sofa
 - Actual movement is ~1.3cm
- Synchronized with DVD

Mechanical - Motors

- Stepper motors
 - Less powerful
 - Digital device:
 - Easy to control
- Moving Coil Motors
 - Much more powerful
 - Analogue device
 - Much harder to control

 - Needs precise feedback from sensors.

SensAble Phantom devices

- Designed to deliver force feedback
 - Also a mechanical tracking device
 - May deliver less FF DOF than tracking
- Models in the NVIS VR lab:
 - SensAble Phantom Desktop
 - 6DOF tracking
 - 3DOF force-feedback.

Phantom Desktop

- Motors with Position sensors
- Pivot with position sensors

Phantom Desktop DOFs
Phantom Desktop

- Provides a tool to touch objects
 - ‘pen-like’ tool
 - Tip ‘shape’ definable
- Very precise control
 - Resolution at the tip ~0.02mm (in 3DOF)
 - Resolution permits surface qualities in the scene (roughness)
 - Requires very high update rate (>1kHz)

Phantom Desktop

- Suitable to simulate:
 - Pen/Paintbrush
 - Probe
 - Medical instruments
- Not suitable for:
 - Heavy objects
 - Can’t deliver enough force
 - Can’t press in the correct way
 - Could remove ‘pen’ and use dummy object

Phantom Desktop: Common use

- Often built into 3D display
 - Augmented Reality
 - Based on half-silvered mirror
- Hand moves probe in reflected 3D scene
 - Can interact with the scene
- Very effective interface

Phantom 1.5/6DOF

- Similar but…
 - Bigger
 - Wider range of motion
 - More powerful
- Provides 3 more DOF at the tip
 - Full FF in 6DOF of the ‘handle’

Phantom 1.5/6DOF

- Drilling in human bone
 - Application developed by Melerit AB
- Must work quickly
 - Doctor (and patient) gets X-ray dose while they work
- Must work accurately
 - Mistakes can make the situation worse
- Off-line training very beneficial

Example application
Melerit AB - Bone drilling

- Use the actual bone drill
 - Weight is right
 - Behaviour is correct
- Replace the 'pen' grip on the Phantom
 - Attach by the drill 'bit'
- Simulate bone and drilling with haptics
 - Rigidity
 - Surface qualities
 - Locking effect of the bone on drill

Drilling in human bone

Bone drilling

Pinning joint fractures

Working applications

- Rapid design and testing of "gearshift feel" in trucks.
- Replaces expensive physical models.

StoraEnso

- Virtually test the "grip stiffness" of cardboard boxes
- Adjust type of board
- Create cost efficient way to design
Force Feedback Gloves.

- Immersion 'CyberGrasp'
- Full hand force feedback
 - Feel objects in the scene
 - Objects are weightless

Glove plus armature

- Immersion 'CyberForce'
- Adds weight to objects
- User can rest hand on an object
- Resolution
 - ±0.06mm, ±0.09°
- Delivers Force of 8.8N
 - Less than 1Kg equivalent

Delta Haptic Device

- Armature-based haptic devices have a problem with force.
 - Nothing like enough of it.
 - Even less torque
- New device is considerably better
Delta Haptic Device

- Strange armature gives sizeable coverage
 - 36cm diameter x 30cm
- Much more force and torque
 - 25N (~3Kg)
 - 0.2Nm
- Less good resolution than phantom
 - 0.1mm x 0.04 degrees

Magnetic Levitation Haptic Device

- Torque delivered through ‘wrist’
- Motion range:
 - 15-20 degrees rotation
 - 25 mm translation
- Position sensitivity: 5-10 µm
- Maximum stiffness of 25 N/mm
- Maximum force/torque: 55 N / 6 Nm

Sensor Arm - U. Tokyo

- 6 DOF
 - Shoulder (3)
 - Elbow
 - Wrist (2)
- All measured
- All force-enabled

Sensor Glove - U. Tokyo

- 20DOF
- Every finger joint
- +1 for each digit
- All force-enabled
Virtual Chanbara - U. Tokyo

Summary:
Haptic equipment

- Mechanical devices are a way forward
 - Need range of movement
 - Need high resolution
 - Need levels of force that are hard to find
 - Still not giving enough
- Current devices limited in range
 - Largest devices give ~1m movement
 - No (general) portable devices available

Virtual Reality Technology and Programming
TNM053:
Lecture 8.5: Haptics force modelling

Forces and physical models

- (3DOF) 6DOF hand set
- How are the forces derived?

Mathematical models

- Weight
- Motion (inertia)
- Moments of inertia
- Impact
- Deformable objects
- Surface haptics - Surface properties
- Volume haptics - Volume Properties
Modelling weight

- Vertical force
- Derived from mass of object
- Complex set of forces derived

Modelling weight (2)

- Simple force
 - leads to complex derived forces
- Determined by the object
 - Mass → inertia
 - Mass distribution → Moments of inertia
- Determined by nature of the ‘handle’
 - The way in which it is attached
- Getting it wrong affects realism
 - People know how it should feel!

Linear Motion

- User applies a force to an object:
 - It accelerates away from point of contact
 - Determined by mass
 - User feels a force
- When the user stops pushing:
 - Object decelerates?
 - Due to friction?
 - Perhaps modelled with a ‘spring damper’
 - User feels a force

Angular motion

- Object has a moment of inertia about any axis
- Force produces rotation about an axis
- Angular acceleration: \(\alpha = \frac{(\text{force} \times \text{distance})}{\text{moment of inertia}} \)

Rigid body motion in scene

- Simple because it’s symmetrical
- Horrible when it’s not

Force measurement

- Haptic devices often have no means to measure force!
 - Technology exists but is hard to use
- Device measures distance moved
 - Force applied to user’s probe accordingly
- Proxy object:
 - Virtual object holding position on the surface of the object
 - The proxy is the rendered object
‘Measuring’ force

- Model with ‘spring’
- Force proportional to square of motion
 - Typically very small motion

Prox

length I, force \(\propto \dot{I} \)

Impacts

- Methods exist for managing collision detection in a scene
- Moving object in collision:
 - Imparts momentum to other object
 - Begins to push user’s probe away
 - Imparts an impulse to other object
 - Fast moving objects in particular
 - Elastic and inelastic collisions

Impacts (2)

- Hard to do with phantom equipment
 - Insufficient force delivered too slowly
- Specialist hardware is common
 - virtual Chanbara
 - No FF, just impact

Deformable objects

- Rigid box replaced by spring model
 - Constants to model desired behaviour
- Not very realistic

Sprung polygon surface

Surface deformation
- Responds to applied force
- Complex behaviour

- Modelled in many ways
- Spring-connected polygons is common
 - Relatively easy to model
 - Not necessarily very realistic
 - Essential to design polygon mesh well
Sprung polygon box
- Edges and faces are different
- Edges relatively rigid
- Faces more deformable

StoraEnso simulation
- Polygon model is real engineering simulation

Sprung polygon surface
- For good realistic modelling need:
 - correct polygons and enough of them
 - correct spring qualities
 - correct level of propagation through mesh
- Produces big mathematical problem
 - Defining the spring qualities
- Well known problem in engineering:
 - Finite Element method

Surface properties
- Whole area of research:
 - Surface haptics
- Looking at ways to model...
 - Surface roughness
 - Surface friction
- ...on general (not flat) surfaces

Rendering and surface haptics
- Surfaces of objects are sometimes flat
 - Easy to render these
- General surfaces are not flat
 - Well established models to render these
 - Gouraud and Phong shading models
 - Make them look smooth
- Want same effect in surface haptics

Smooth surface
- Friction: static then dynamic
‘Real’ surfaces

- In our scene surfaces are not simple:
 - Most are irregular
 - All are composed of polygons
 - None is smooth

- How do we model surface interaction?

 Use:
 - a proxy: a virtual object reporting real surface
 - and ‘force shading’ rules

A real surface

A real surface (2)

- Proxy moves on polygon surface
 - Computes surface properties
 - Adds fictional forces to physical tip

- Physical tip ‘feels’ interpolated normal
 - Interpolated like phong shading model

Surface haptics

- Surface properties
 - Modelled using complex polygon sets
 - Can apply ‘surface textures’ producing variable surface friction(s)

Summary: ‘Scene’ modelling

- Movable objects
 - Having mass distribution - complex behaviour

- Surface properties
 - Friction qualities vary across materials

- Deformable objects
 - Complex shapes
 - Deformation affects friction properties

- Big computational problem!

Haptic ‘Visualization’
Virtual Prototyping

‘Fictional’ Forces

- Derived from physical models
 - Vital for physical data visualization
- Physical model derived from real-world situations:
 - Physics
 - Chemistry
 - Engineering

Physical model: Discrete properties

- Probing electrostatic properties
 - Forces derived from physical effect
 - Well quantified methods
- E.g. Chemical forces
- Well-characterized potentials:
 - E.g. Lennard-Jones ‘6-12’ potential
 - More complex potentials (molecular mechanics)

Chemical interactions

- Total force found by summing partial forces

‘Molecule on a stick’

1,2-Dichloroethane

- Consider rotation around central axis
More worthwhile example: Protein-Ligand docking

Protein-Ligand docking

- Simple forces not good enough:
 - Need more complex functions
 - Computationally very expensive
 - Makes it hard to calculate in real time
 - Impossible at the moment
 - Need a method which provides easier mathematics
 - Must still give good quality results
 - Real-time updates

Volume haptics

- Whole (quite new) area of research:
 - Examining data volumes through haptics
- Volumes of data can have material properties
 - Density
 - Tensile properties
 - Viscosity
 - Velocity
- Can map those into haptic forces

Probing volume data

- Can map those into haptic forces
 - As it moves through the data
 - Dependent on data, speed, probe type
- Many methods, e.g.
 - Direct physical properties
 - Identification of surfaces
- Goal, to perceive data types at a point
- Example: Protein-ligand docking

Volume haptics (2)

- Create fictional forces for virtual probe
 - As it moves through the data
 - Dependent on data, speed, probe type
- Many methods, e.g.
 - Direct physical properties
 - Field strength dependent on atom type
 - Identification of surfaces
- Goal, to perceive data types at a point
- Example: Protein-ligand docking

Protein-Ligand docking with volume effects

- Current exjobb project at NVIS
- Protein Ligand interaction can be modelled by a potential field
 - Field strength dependent on atom type
 - Compute force on each atom in ligand from local, atom-type-specific field
- Maths much simpler than before:
 - Can calculate forces on ligand in real time
Medical work

- Volume haptics is very interesting for medical work
- Volume data is commonplace:
 - CT (X-Rays) data
 - MRI data
- Tissue types show well-defined property differences in the data

Gamma knife

- Recent Exjobb project at ITN
 - Collaboration with hospital in Stockholm
 - And with Elektra
- Treatment planning for brain tumours:
 - using precise radiation treatment
 - Requires exact location of tumour tissue

Brain tumour data

- Brain tissues:
 - Grey matter
 - White matter
 - Fluid
 - Tumour

Gamma Knife Application

Mastoidectomy
Mastoidectomy (2)

Visualization of fluid data
- Interaction with a fluid simulation output data
- Volume containing:
 - Density
 - Velocity
 - Viscosity
 - Vorticity
- Use ‘paddle’ probe to feel vorticity

Haptic fluid flow probe

Visualization for the blind
- Graphical visualization of limited use to the visually impaired
- Haptic interaction can improve that
- Rendered images can be interpreted through the haptic interaction
 - Edge sharpness → contrast
 - Colours → roughness of the surface
 - Shininess → dynamic/static friction

Haptic rendering process

Output geometry
Summary

- In addition to scene objects can use simulated data through fictional forces
- These forces provide a means to probe data through the sense of touch
- Valuable addition to visual cues representing data values in display
- Can combine both for a very powerful interactive 'visualization' system