Haptics

Haptics – Science of Touch
- Haptics from Greek
 - \(\alpha \phi \eta \) = touchable
 - Scientific description of touch, the sense
 - Has nothing to do with computers and games
 - Self perception and perception of the world
- Multi- and crossdisciplinary
 - Old research area
 - Psychophysics
 - Control theory and system identification
 - Computer science

Synopsis
- Haptics – background, motivation, research
- Haptics in computer science and VR
- The senses, important aspects
- Haptic devices
- Haptic rendering

Psychophysics
- Applied biology and psychology
 - Limits of haptic senses
 - Haptic memory and processing
- Computers are their tools
 - Haptics has little to do with computers
 - Use computer to perform controlled experiments
 - However: why simulate what you have in real?
Control Theory

- Robotic control
 - Applied haptics in robotics
 - Tele operations (remote control)
 - Stability, performance, latency, etc
- Development of hardware
 - devices and haptic rendering

Motivation in VR

- Increased body control
 - Coordination
 - Speed and precision
- Guidance
 - Pathways, tutoring
 - Physical support
- Information
 - Additional channel
 - Hardness, strength, position
 - Reinforce visual impression

Taxonomy for GUI

- Miller & Zeleznik
 - GUI enhanced with haptics
 - Natural and better control
- Basic modes
 - Anticipation
 - Follow-through
 - Indication
 - Guidance
 - Directions
- Extend to 3D VR interactions

Applications

- Haptics more important in some cases
 - Where vision is poor or not available
 - Where touch is of other importance
- Some examples
 - Bone drilling
 - Spinal anaesthesia
 - Virtual prototyping
 - Stroke rehab
Bone Drilling
- Poor visibility / no visibility

Spinal Anaesthesia
- Feel the tissues
 - Push towards membrane
 - Pop through and stop!

Virtual Prototyping
- How will it work?
 - Cheap(er) realization of prototype
 - Connect to CAD/CAM system
 - Easy to update minor changes, adjust parameters
 - Test feel, ergonomics, assembly, etc

Stroke Rehab
Two Haptic Senses

- Tactile senses (cutaneous)
 - Nerves under skin
 - Pressure, shear, slip
 - Micro shape, vibrations, etc
 - Temperature, pain
- Kinaesthetic senses (proprioception)
 - Nerves in muscles and joints
 - Forward kinematics
 - Position, force, macro shapes, weight

Building One Sense

- A single whole
 - Even kinaesthetic devices give tactile stimulation
- Exploratory procedures
 - Identified modes of interaction
 - Lateral motion
 - Pressure
 - Static contact
 - Unsupported holding
 - Enclosure
 - Contour following
- Identifies properties of objects
- Important in design of VR interaction and rendering

Haptic Illusions

- Body size and posture
 - Touch with fingers crossed
 - Stimulate muscles → illusion of motion → illusion of size change
 - Tactile distances vary over skin surface
- Shapes
 - Fishbone/comb illusion
 - Rotational error
 - After-effects
- SNR-based mix between senses

Tactile Characteristics

- Micrometer precision
 - Feel a the edge of a paper on a flat surface
 - Feel difference on directions and tilting
- Vibrations
 - Large range – sensing 20–1000 Hz
 - Very small magnitude
- Temperature
 - Termoconductivity
 - Heat, cold
- Pain!
Tactile HID

- Feedback from computer
 - Simulate sensations
 - Indicate events
 - No input, but put on mice, etc
- Many types, for example
 - Vibrotactile
 - Surface
 - Pin-based
 - Electrocutoaneous

Vibrotactile Devices

- Vibrating elements
 - Based on motor or speaker
 - Distributed over body
 - Put into objects, e.g. input devices

Vibrotactile Devices

- Applications
 - Indicate direction
 - Vibrations in sequence
 - Intuitive perceptualization
 - Indicate event
 - Warning signal
 - Simulate follow through on touch screens
 - Indicate closeness
 - Varying magnitude
 - Discrimination threshold is not very good

Surface-based Devices

- Real surface
 - Pushing, shearing
- Simulate touch
 - Pressure against surface
 - Slipping
 - Also closeness if you like
- Crude
 - Poor realizations
Pin-based Tactile Devices
- Pins sticking out of surface
 - Typically > 5x5 pins
 - Pushing or vibrating
 - Magnitude in millimeter range
- Indicating shapes
 - Ridges and edges can be simulated
 - Moving vibrations can be felt as slipping
- Typically large
 - Pneumatic, servos, electromagnetic
 - Hard to fit on mice or other devices

Electrocutaneous Devices
- Electrocutaneous
 - Electric stimulation of nerves
 - Anodes and cathodes
 - Feeling of touch, slipping
 - Showing shapes, edges
 - Sequences to represent motion
 - Small form factor
- Issues
 - Conductivity dependent
 - Salt, sweat, pressure
 - Pain!

Kinaesthetic Characteristics
- Input/output
 - Connection between motoric and sensory systems
 - Parietal cortex – sensing, data integration, manipulation
 - Coordination
 - Balance between inner and outer forces
- Low resolution
 - Precision in centimeter range
- Dynamic system
 - Manipulation at about 1–10 Hz
 - Low cognitive attention below 1 Hz

Kinaesthetic HID
- 3D input device with feedback
 - Degrees-of-freedom
 - Both input and output
 - Important for what to simulate
- Two control paradigm
 - Impedance control – force feedback
 - Admittance control – position feedback
- Important characteristics
 - Precision, strength
 - Mechanical stiffness, Z-width
Force Feedback Control Basics

- Closed loop control system
 - Feedback force affects position
 - Dynamic, hybrid non-linear system
 - Require high update rates, typically 1 kHz
- Warning
 - For high loop gain
 - Stiff system causes instability
 - Caused by high stiffness in simulation
 - For phase shifts
 - Caused by feedback delay
 - Caused by low mechanical stiffness

Grounded / Ungrounded

- **Grounded devices**
 - Provide force/torque feedback relative world
 - Lean against wall
- **Ungrounded**
 - Grounded on body
 - Using inertia

Force Feedback Controls

- Add motor to your control
 - Force feedback steering wheels
 - Force feedback joysticks
 - Often playback
 - Higher stability
 - Lower quality
- Issues
 - Typically low quality feedback
 - Not much use in VR
Force Feedback Wand/Stylus

- Single mechanical arm
 - Sensable
 - Desktop PHANTOM
 - Premium PHANTOM
 - PHANTOM Omni
 - Multiple mechanical arms
 - Force Dimensions
 - Delta
 - Omega
 - Haption
 - Virtuose 6D

Device Characteristics

- Very high precision
 - Required for stable interaction
 - Measured in micrometers
 - Typically cheap, but you get what you pay for
- Force feedback
 - Light devices
 - Varying strength, typically < 8 N
- 6 DoF – torque feedback
 - Low strength, typically < 0.5 Nm
 - Limited motion
 - Backdrive friction (gears and such)
 - Large and heavy stylus

More Force Feedback

- MagLev
 - Magnetism-based
 - Very strong
 - Large device
 - Miniature working space
- Spidar
 - Strings
 - 4 = 3 DoF, 8 = 6 DoF
 - Occlusion problem
 - String stiffness problem

Other Force Feedback Devices

- Large variation
 - Much research
 - Not much commercial
Position Feedback Control Basics

- Admittance
 - Force sensors and explicit position control
 - Handle virtual weight, dynamics
 - Simulate acceleration from input force
 - Don't admit penetration of stiff walls
 - Simulated stiffness limited by mechanical stiffness

Special Considerations in VR

- Workspace size
 - Haptic devices are typically small
 - Long mechanical arms have poor stiffness
 - Mobile haptic devices
 - Wearable haptic devices (ungrounded)
- Occlusion
 - Mechanical arm might be in your way
 - Interference with other tracking
 - Magnetic, sound or image-based

Asynchronous Rendering

- Graphics rendering
 - Traverse scene graph (@ 10–100 Hz)
 - Much processing, graphics, events, etc
- Haptic rendering
 - High update rate, typically 1 kHz
 - Shared or separate scene graph
 - Separate, asynchronous thread (process?)
 - Synchronization issues
Haptic Rendering

- Software to generate haptic feedback
 - Consider kinaesthetic force feedback only
 - Most common, most practical
 - Impedance control algorithm
 - Position input – force output
- Geometry rendering
 - Penalty-based, god object-based, proxy-based
 - Polygons, implicit surfaces, nurbs, etc.
- Volume haptics
 - Haptic rendering of non-surface data

Important Properties

- Mass
 - Inertia, momentum
 - Moment of inertia
 - Wrong behaviour kills the illusion
- Surface properties
 - Friction
 - Dynamic and static
 - Hardness
 - Textures
 - Wrong properties causes misinterpretations

Important Characteristics

- Smooth
 - No discontinuities
- Conservative
 - Do not add energy
 - Passive behaviour
 - Stable behaviour
- No artifacts
 - Haptic behaviour should reflect the properties
 - No vibrations, jitter or other misbehaviour

Penalty-based Haptic Rendering

- Penalty for penetration
 - Find shortest way out
 - Push haptic instrument out
 - Force dependent on penetration depth
 - "Stiffness" (N/m)
- Issues
 - Force discontinuities
 - Pop-through
 - Simplistic
 - no friction, texture, etc.
God object-based Rendering

- Point tracing the polygons
 - Spring to calculate feedback
 - Stiffness (N/m)
 - No pop-through
 - Friction cone
- Issues
 - Fall-through "between" polygons
 - No contact size, only point
 - Hardware accelerated
 - No topology information

Proxy-based Haptic Rendering

- Ruspin
erenderer
 - Finite-sized proxy sphere
 - Configuration space
 - Iteratively update proxy position
 - PD regulator
 - No integration – why?

Speed and Update Rates

- Fast polygon processing
 - Find closest, find configuration space, etc.
 - Hierarchical bounding spaces
 - Local haptic surface
 - Update cache at 50 Hz
 - Haptic rendering on cache at 1 kHz
- Issues
 - Synchronization
 - Size of cache vs. size of movements
 - Motion and prediction

Friction and Force Shading

- Force shading
 - Interpolated normal
 - Modulate proxy motion
- Friction
 - Limit length the proxy may travel
 - \[\ddot{x} = \frac{f_i - \mu f_n}{b} \]
- Bump-maps
 - Gray texture or selected channel
 - Modulate normal by image gradient
Roughness
- Simplified simulation
 - Miniature bumps = no spatial correlation
 - Random force modulation
 - Gaussian noise
 - Magnitude and deviation parameters
 - Fast computations and natural feeling

Event-based Force Feedback
- The haptic senses are dynamic
 - Stimulated by changes
 - Low cognitive response to low frequency changes
 - Even sense of transiental vibrations
- Event-based haptics
 - Low frequency response
 - Proxy-based
 - Low stiffness, high stability
 - Add transient vibrations
 - Event and material specific
 - Apply inverse device transfer function

Volume Haptics
- For scientific/medical visualization
 - Volumetric data (CT, MRI, CFD, etc)
 - Complex data, hard to understand
 - Use VR and haptics to examine
 - Additional freedom in exploration
 - Haptics for information and guidance
- Basic principles
 - Surface metaphor
 - Force functions
 - Shape representations

Surface Metaphor
- "Occupancy" volume or implicit function
 - Extracted geometry and use surface rendering
 - Render surface from interfaces in volume
 - Direct Volume Haptics (DVH)
- Uses in simulators
 - Virtual prototyping
 - Bone drilling/milling
Force Functions

- Push haptic instrument
 - Force vector as function of data
 - Gradient, viscosity, etc
 - Static control, \(\vec{a} = F(\vec{V}(\vec{x}), \vec{x}) \)
 - Added memory = dynamic control

\[
\vec{a} = C_1 \hat{\vec{V}}(\vec{x}) + C_2(\vec{V}(\vec{x})) \hat{\vec{x}}
\]

\[
\vec{a} = C_3(|\vec{V}(\vec{x})|) |\hat{\nabla} \times \vec{F}(\vec{x})| \times \vec{F}(\vec{x})
\]

Shape Representations

- Render shapes
 - Many different metaphors for data representation
 - Basic haptic primitives
 - One for each manifold dimensionality
 - Point, line plane (and force)
 - Control parameters as functions of data
 - Strength and direction
 - The function controls the feeling
 - Adapt function after data, contents, user and purpose

Summary

- Haptics – two senses in one
- Psychophysics
 - Aspects, functionality, illusions
- Control theory
 - Control loops, Z-width, admittance, impedance, dynamic hybrid system
- Devices
 - Admittance, impedance, tactile, grounded, etc
- Haptic rendering
 - Geometry, volumes, shading, artifacts, bump-map