11 Testing of Logic Circuits

- Fault Model
 - Stuck-At Model
 The model assumes that all faults manifest themselves as some wires (inputs or outputs of gates) being permanently stuck at logic value 0 or 1.
 - The wire \(w \) is stuck-at-0 (denoted as \(w = 0 \)).
 - The wire \(w \) is stuck-at-1 (denoted as \(w = 1 \)).

- Single and Multiple Faults
 Practice has shown that a set of tests that can detect all single faults can also detect the vast majority of multiple faults.

- Complexity of a Test Set
 - Testing combinational circuit
 - The output depends only on the test set.
 - A test set comprised of all possible input valuations (\(2^n \) for an \(n \)-input circuit) is only suitable for small circuits.
 - A complete test set, capable of detecting all single faults, usually comprises a much smaller number of tests.

- Path Sensitizing
 - Sensitize a path
 Activate a path so that the changes (faults) in the signal that propagates along the path have a direct impact on the output signal.
 - For an AND or NAND gate, all other inputs must be set to 1.
 - For an OR or NOR gate, all other inputs must be set to 0.

The test \(w_1 w_2 w_3 w_4 = 1101 \) detects the occurrence of faults \(a/0, b/0, \) and \(c/1 \).
The test \(w_1 w_2 w_3 w_4 = 0011 \) detects the occurrence of faults \(a/1, b/1, \) and \(c/0 \).

The test set \((001, 010, 011, 100) \) is used to detect faults in the circuit.
11.4 Circuits with Tree Structure

Figure 11.5 Circuit with a tree structure

11.5 Random Tests

Total number of possible functions of \(n \) variables: \(2^n \)

<table>
<thead>
<tr>
<th>Test</th>
<th>(f_0)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
<th>(f_4)</th>
<th>(f_5)</th>
<th>(f_6)</th>
<th>(f_7)</th>
<th>(f_8)</th>
<th>(f_9)</th>
<th>(f_{10})</th>
<th>(f_{11})</th>
<th>(f_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0 0 0 0 0 0 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>0 0 0 0 1 1 1 1 0 0 0 0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0 0 1 1 0 0 1 1 0 0 1 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Each fault transforms the XOR circuit into a faulty circuit that implements a function other than XOR.
Random testing works particularly well for circuits with a low fan-in. If fan-in is high, it may be necessary to resort to other testing schemes.

11.6 Testing of Sequential Circuit

- The output depends on both the test set and the states.
- Design for Testability
 - Scan-Path Technique
 1. The operation of the flip-flops is tested by scanning into them a pattern of 0s and 1s and observing whether the same pattern is scanned out.
 2. The combinational circuit is tested by applying test vectors on \(x_P, x_{P'}, y_P, y_{P'} \) and observing the values generated on \(x_{P''}, x_{P'''}, y_{P''}, y_{P'''} \).

11.7 Built-In Self-Test (BIST)

Linear Feedback Shift Registers (LFSRs) are used to generate Pseudorandom Binary Sequence (PRBS) and compress the test results.

Figure 11.10 Effectiveness of random testing

Figure 11.11 Scan-path arrangement

Figure 11.12 Circuit for Example 11.3

Figure 11.13 The testing arrangement

Figure 11.14 Pseudorandom binary sequence generator (PRBSG)
Effectiveness of the BIST approach
- Longer LFSRs give better results.
- Pseudorandomly generated tests do not have perfect coverage of all possible faults.
- The compression process results in a loss of some information on the test results, such that two distinct output patterns may be compressed into the same signature (aliasing problem).
Boundary Scan
- Suppose that each primary input or output pin on a chip is connected through a D flip-flop and that a provision is made for a test mode in which all flip-flops can be connected into a shift register.
- Then the test information can be scanned in and scanned out using the shift-register path on a single chip.
- Shift registers of all chips on a printed circuit board (PCB) can be connected to form a board-wide shift register for testing purpose.